UNICONE

USER

MANUAL

Version 1

May 2005

written by

Bengt H. Fellenius and Jules-Ange Infante

UniCone is a program for the analysis of results from

cone penetrometer tests: CPT and CPTU

and analysis of pile capacity using CPTU Data

UniCone is developed by Bengt H. Fellenius, Jules-Ange Infante, and Abolfazl Eslami

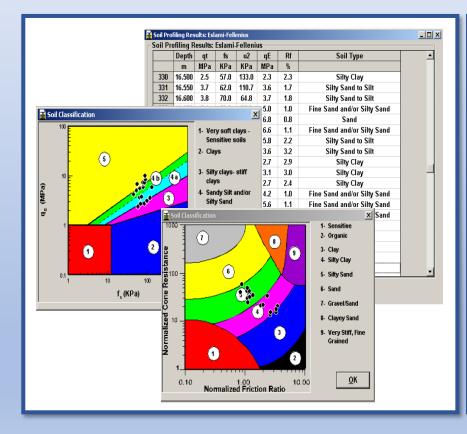
© 2002

UNISOFT LTD. 1905 Alexander Street SE Calgary, Alberta, T2G 4J3

www.UniSoftLtd.com

UniCone Method, Eslami & Fellenius (1997)

Pile capacity by direct CPT and CPTu methods applied to 102 case histories

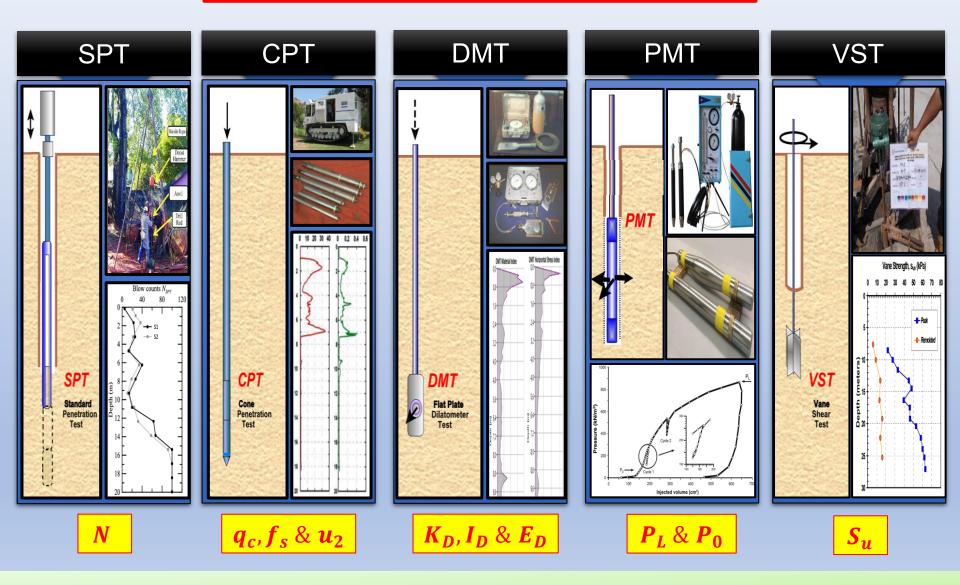

Abolfazi Eslami and Bengt H. Fellenius

Abstract: Six methods to determine axial pile capacity directly from cone penetration test (CPT) data are presented, discussed, and compared. Five of the methods are CPT methods that apply total stress and a filtered arithmetic average of cone resistance. One is a recently developed method, CPTu, that considers pore-water pressure and applies an unfiltered geometric average of cone resistance. To determine unit shaft resistance, the new method uses a new soil profiling chart based on CPTu data. The six methods are applied to 102 case histories combining CPTu data and capacities obtained in static loading tests in compression and tension. The pile capacities range from 80 to 8000 kN. The soil profiles range from soft to stiff clay, medium to dense sand, and mixtures of clay, silt, and sand. The pile embedment lengths range from 5 to 67 m and the pile diameters range from 200 to 900 mm. The new CPTu method for determining pile capacity demonstrates better agreement with the capacity determined in a static loading test and less scatter than by CPT methods.

Key words: cone penetration test, pile capacity, toe resistance, shaft resistance, soil classification.

UniCone Inputs & Outputs

Pile Capacity Calculation


Soil Profiling

						UniCo	ne					. 5
						File Ing	ut Edit Ar	nalysis Results Graphic Help				
								CPT & Profiling 🕨				
								Pile Capacity 🕨 Es	lari-Felenius 💆 Pile Ca	pacity: Eslami-Fellenius		<u>-0×</u>
									tth.	Unit Shaft		Scale
									PC svetof	Resistance (KPa)	Total Resistance (KN)	
									tmertmann		37 60 90	
										- Z_		
Depth qt fs u2 m MPa KPa 1 18.75 10.994 2 16.8 9.427 3 18.85 8.202 4 18.9 7.223 51. 152.6										/		
Da	sistance										/1	
Je ne			6	- 2	_					1	/	
	Depth	<u> </u>	fs	u2				-	Unit Toe Resistance	4- <u>F</u>	/ +	
	m	MPa	KPa 86.	KPa				_				
1		10.994	86. 78.	150.1					11.00 MPa	8. 5 ⁻¹	/	
2	18.8	9.427		150.3					Toe	1		
3	18.85	8.020	59.	150.					Resistance	. 1		
4	18.9	7.223	51.	152.6				•	409. KN	[/ 1	
	esistano			464 7						1 É L		
			fs	u2	F	CS		Rs Soil Type 🔺	Total			
	Depth	qt MD-			qE	LS	rs KPa	Rs Soil Type	Shaft			
407	m 6.900	MPa	KPa	KPa	MPa	0.04			Resistance			
137 138	6.900	1.7 1.5	16.0 16.0	194.8 194.4	1.5 1.3	0.01	14.6	144.1 Silty Sand				
138	7.000	1.5	16.0	231.4	1.3	0.025	32	Summary				×
						0.025						
140	7.050	1.4	19.0	213.0	1.2		29.	Method	R,	R	R	
141	7 100	14	<u>20 N</u>	186.8	1/	N N25	29	metrou	<u>^</u> t	''s	<u>^u</u>	
								Eslami-Fellenius	409. KN	541.KN	949.7KN	Reset
								European				Reset
									376. KN	807.KN	11102.584	
								LCPC	218. KN	340.KN	558.2KN	Reset
								Meyerhof	435. KN	223.KN	657.8KN	Reset
								Schmertmann	372. KN	411.KN	783.2KN	Reset
								Tumay	372. KN	442.KN	813.9KN	Reset
							_					

Why In-Situ Testing?

Laboratory Tests Limitations	Field Tests Advantages				
Difficulties for undisturbed sampling	Overcome sampling difficulties				
Soil disturbance & maintenance	Minimum changes in stress state				
Soil volume change	Simple and fast				
Omitting confinement pressure	Economical				
Size effect and boundaries	Dominant applications in FE				

Major Approaches: In Situ Penetration Tests

New Enhancements & Novel Points

- 1. Soil Behavior Classification (Old, Triangular, Trend & Other)
- 2. Characterization and Interpretation
- 3. Relevant Parameters
- 4. Capacity Appraisal
- 5. Settlement Estimation
- 6. Resistance Distribution
- 7. Load-Displacement ($\mathbf{P} \Delta$)
- 8. Lateral Earth Pressure
- 9. Problematic Deposits Recognition
- **10.** Ground Modification